Polarization splitter based on photonic crystal fibers
نویسندگان
چکیده
منابع مشابه
Design of Photonic Crystal Polarization Splitter on InP Substrate
In this article, we suggested a novel design of polarization splitter based on coupler waveguide on InP substrate at 1.55mm wavelength. Photonic crystal structure is consisted of two dimensional (2D) air holes embedded in InP/InGaAsP material with an effective refractive index of 3.2634 which is arranged in a hexagonal lattice. The photonic band gap (PBG) of this structure is determined using t...
متن کاملdesign of photonic crystal polarization splitter on inp substrate
in this article, we suggested a novel design of polarization splitter based on coupler waveguide on inp substrate at 1.55mm wavelength. photonic crystal structure is consisted of two dimensional (2d) air holes embedded in inp/ingaasp material with an effective refractive index of 3.2634 which is arranged in a hexagonal lattice. the photonic band gap (pbg) of this structure is determined using t...
متن کاملPolarization splitter based on a square-lattice photonic-crystal fiber.
A three-core polarization splitter based on a square-lattice photonic-crystal fiber is presented. The component separates the input field into two orthogonally polarized beams that are coupled to the horizontal and vertical output ports. The splitter has been designed through modal and beam propagation analysis by employing high-performance codes based on the finite-element method. Results obta...
متن کاملPolarization beam splitter based on a photonic crystal heterostructure.
The design and characterization of a photonic crystal (PC) polarization beam splitter (PBS) that operates with an extinction ratio of greater than 15 dB for both polarizations are presented. The PBS is fabricated on a silicon-on-insulator (SOI) wafer where the input and output ports consist of 5 mum wide ridge waveguides. A large spectral shift is observed in the dispersion plots of the lowest-...
متن کاملUltracompact photonic crystal polarization beam splitter based on multimode interference.
We propose a theoretical design for a compact photonic crystal (PC) polarization beam splitter (PBS) based on the multimode interference (MMI) effect. The size of a conventional MMI device designed by the self-imaging principle is not compact enough; therefore, we design a compact PC PBS based on the difference of the interference effect between TE and TM modes. Within the MMI coupler, the depe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2003
ISSN: 1094-4087
DOI: 10.1364/oe.11.001015